
HOMEWORK 4

Problem 1 Let µ(n) be the Möbius function: µ(n) = 0 if n is divisible by a
square of an integer, and µ(n) = (−1)k, where k is the number
of prime factors of a square-free number n. Prove that
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Problem 2 Let Λ(n) = log p if n = pα, where p is a prime and α ∈ N, and
Λ(n) = 0 otherwise (von Mangoldt function). Prove that
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(Here ζ ′(s) stands for the derivative).
Problem 3 Show that for Re s > 2

ζ(s− 1)

ζ(s)
=
∞∑
n=1

ϕ(n)

ns
,

where ϕ(n) is Euler’s function.
Problem 4 Show that for Re s > 1
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where
τ(n) =

∑
d|n
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— total number of all positive divisors of the number n, includ-
ing 1 and n.

Problem 5 Show that for Re s > 1
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where Γ(s) is Euler’s gamma-function, defined for Re s > 0 by
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